
The Concrete 
Architecture of 
Chrome

Thick Glitches
Tyler Mainguy, Liam Walsh, Andrea Perera-Ortega, Jessica Dassanayake, Alastair Lewis, 
Brendan Kolisnik



Introduction

● The Concrete Architecture was developed using Understand.

● Chrome is made up of 5 distinct systems that interact together and 
uses an object-oriented style.

● We refined our original Conceptual Architecture, developed an 
alternative Concrete Architecture, and then produced our final 
Concrete Architecture.



Derivation Process

Part 1
Revised our conceptual 

architecture (subsystems 
and dependencies)

Part 2
Observed the metrics 

tree map on Understand 
to determine the major 
subsystems and their 

dependencies

Part 3
Came up with a possible 
concrete architecture and 

applied the reflexion 
model to derive the final 

version



Revised Conceptual Architecture

Legend

subsystem

dependency



Alternative Concrete Architecture

Legend

subsystem

dependency



Concrete Architecture

Legend

subsystem

dependency



Reflexion Analysis 

Legend

subsystem

expected & 
justified 
dependency

unexpected 
& justified 
dependency

unexpected 
& unjustified 
dependency



Reflexion Analysis Dependencies
Justified/Unjustified Dependency 

From
Dependency To Rationale

Unjustified UI Networking Reuses networking's platform independent code for resolving local path 
names 

Justified Storage Networking Blob downloading/uploading. Blobs are not likely to be malicious. A lot of data 
to route through multiple subsystems, so a direct link is beneficial

Justified UI Browser Using apple's framework to fill in the task bar. Chrome is responsible for 
drawing anything that isn't tab content

Justified UI Content Engine Developer Tools. Chrome shell console, inspect element, etc

Justified Content Engine Storage File API, blob storage, quota manager

Justified Content Engine Network Web sockets, Hyperlinks, CDN, disk caching (unconfirmed downloads)

Justified Content Engine UI Every time UI needs something painted/rendered, it communicates directly 
with UI. All event objects in UI are depended on by content engine



In-Depth Look at the Architecture
● Object-oriented architecture to abstract systems. Change an implementation of 

an object without affecting its clients.

Browser
The main process of the 
application that controls 
other subsystems and is 

able to render its own 
content such as the 
search bar, settings, 

bookmarks etc.

Content Engine
Responsible for Parsing and Rendering 

all content that gets displayed in the 
browsing content area of the 

application

Storage
Handles interaction with the host 

machines file system to store 
data and access it across 

browsing sessions

Networking
Receives and resolves all network 

protocols.

User Interface
The link between the user and 

the browser.



Browser in depth
● App

○ Lowest Level of the Chrome Application, runs on startup
○ Contains startup and shutdown files as well as crash reporters

● Disk Utility
○ Manages mounting and unmounting of file systems.
○ Contains functionality to import data from other browsers 

● Browser Engine
○ Contains the code and files for all of Chrome’s core functionality such as managing extensions, history, 

bookmarks, password manager, offline web pages, themes languages etc.

● Renderer
○ The browser has its own rendering process that draws all of the application other than the actual content 

being displayed
○ This includes the tabs, search bar, settings, and tools

● Password Manager
○ Facilitates the storage and retrieval of usernames and passwords
○ Interfaces with the storage module in order to access persistent storage on the host machine



Conceptual Arch. w/ In-Depth View of Browser

Legend

 dependency

Dependency 
within browser 

subsystem

subsystem

Conceptual 
Browser 

subsystem 
architecture



Concrete Arch. w/ In-Depth View of Browser
Concrete 
Browser 

subsystem 
architecture

Legend

 dependency

Dependency 
within browser 

subsystem

subsystem



Proposed Feature

Chrome Safe Mode

● Ideal for kids or people at work
● Allows user to censor instances of pre-set 

blacklisted words on a webpage or entire websites 
deemed as inappropriate

● Can be activated/deactivated with a user entered 
password

● Blocks out inappropriate content to be displayed 
○ Ex. images

● Utilizes the Browser, UI, Storage and Content 
Engine systems



The Effects of Concurrency

● What does it allow Chrome to do?
○ Sandboxing processes

■ Async requests confirm failed processes don’t block browser I/O 
thread

■ Restrict processes network requests and system access by 
facilitating requests through single access point

○ Execution speed increases
■ Requests to access data made by processes independent of one 

another
● How is concurrency achieved?

○ Single process parent browser process manages child processes 
(render processes)

○ Facilitate communication of render processes to various subsystems 
(i.e. network) through IPC from child to parent

○ Non-blocking asynchronous requests made by render processes 
guarantees that concurrency achieved



Sequence Diagram



Team Issues
● Unjustified or unclear dependencies between 

systems 
○ makes it difficult for developers working 

across systems
● More dependencies in the concrete architecture 

○ leads to suboptimal coupling
○ teams need to communicate efficiently 

● Using Mojo as an IPC system instead of the 
original proprietary system improved inter- and 
intra- process handling which made concurrently 
running systems easier for developer teams to 
work with 

○ However, they needed to migrate the 
initial IPC system to Mojo



Limitations & Lessons Learned
Limitations:

● Source code can be extremely overwhelming and confusing
● Hard to know scope, and when to stop going through function calls
● Source code is in C++, a language none of us were very experienced with

○ Limited comments in the source code
● Steep learning curve at the beginning with Understand

○ Would crash constantly before we sought out help to learn how to use Understand properly
● Had to meet twice the amount of times for A2 vs. A1 due to amount of information we had to go 

through and the more technical nature of the information

Lessons Learned:

● Understand was helpful once we got help from the TAs
● Learned some C++ syntax
● Patience and organization
● It’s ok to ask for help



Conclusion

Five distinct systems
that are:

- highly optimized for performance
- organized in an object-oriented style 

Organized with high cohesion and low 
coupling to increase performance

Lots of justified dependencies 
that were unexpected for 

performance

Large software systems are hard 
to analyze line by line

Tools can trace function calls 



Questions?


